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Abstract 

 
In this paper we show the difficulties encountered 

when performing full system simulation of a distributed 
memory parallel system. To illustrate the problem, we 
have chosen a workbench that evaluates the impact on 
application performance of some simple congestion-
control mechanism that can be implemented in the 
interconnection network. Applications of choice are 
some of those included in the NAS Parallel 
Benchmarks. Running a full-system, execution-driven 
simulation that combines Simics with an 
interconnection network simulator, we observe some 
unexpected, negative interactions of overlapping 
congestion control techniques implemented at the 
network level and at the host level. 

Each MPI implementation uses a different protocol 
stack, and some of them work without TCP. We 
compare and contrast results obtained with MPICH, 
LA-MPI and LAM..  
 

1. Introduction 

 
Full-system simulation has been embraced by 

hardware and software producers as an invaluable help 
in the development of new products. For example, 
extensive tests of an operating system implementation 
for a yet-to-be released machine, and the applications 
running on top of it, can be done in a simulated system, 
while obtaining accurate performance measurements. 
Virtutech’s Simics  [19] is one of the most prominent 
examples of this kind of simulators; this product is able 
to simulate PowerPC, MIPS, Alpha, ARM, IA-64, 
SPARC V9, x86, and AMD64 architectures. IBM has a 
full-system simulator for the Cell Broadband Engine™ 
(Cell BE) processor, codenamed Mambo  [6]. And 
many others are available for different architectures 
and processors. 

In the research area, these simulators have been 
adopted with enthusiasm. In the scientific literature we 

can find plenty of references to research done with 
these tools – just see the list made available by 
Virtutech1. In fact, it has become common by 
conference reviewers, when examining a simulation-
based research work, to ask for a full-system 
simulation of the systems under study, including large 
parallel or distributed systems – in many cases, even 
ignoring the high cost of this kind of simulations 
(processors, memory, execution time, etc.) 

In our experience, full-system simulation is not an 
appropriate tool to evaluate the performance of a large 
parallel system, because the resources required would 
be even larger than the system under evaluation. Thus, 
to study the complete system we need to simulate a 
simplified model. The detailed view of the system, 
essential to fine-tune pieces of hardware and software 
can be done only for a limited number of nodes. In  [1], 
where the design of the torus interconnection network 
of the BG/L is described, we can read: 

“Given the complexity and scale of the BG/L 
interconnection network, having an accurate 
performance simulator was essential during the design 
phase of the project (…) We also recognized the 
difficulties in developing an execution-driven simulator 
(…) for a system with up to 64K nodes. We therefore 
decided upon a simulator that would be driven 
primarily by application pseudocodes, in which 
message-passing calls could be easily passed to the 
simulator”.  

Another important requirement of a full-system 
simulation is, precisely, that it requires the simulation 
of all the aspects of a system. When we are designing 
an element that has to be implemented in hardware we 
require modeling and programming many pieces of 
software. Let us take a network interface card (NIC) as 
an example. We need: 

- A model of the NIC 

                                                   
1 http://www.virtutech.com/about/research/selected-pubs.html 



- A driver for the operating system to interact with 
the NIC 

- If the new NIC does not behave as a standard 
network interface (for example, an Ethernet 
interface) and we want to bypass the operating 
system and/or the TCP/IP protocol stack, we also 
need a new protocol stack and API 

- If we have an application (or middleware) for 
which we want to take advantage of the new NIC, 
we need to modify it to use the new API 

Of course, all these pieces have to be carefully 
crafted and debugged, including their interactions. At 
the end, when we are doing an experiment on 
performance evaluation, it is extremely difficult to 
determine if an unexpected bad result is due to a bad 
NIC design, a buggy driver, or some unanticipated 
driver / operating system interactions.  

An additional issue comes into the light when 
comparing systems. In the previous example, if we 
introduce a design variation into the NIC, and we keep 
the rest of the software layers unmodified, this 
variation may result in unexpected interactions that can 
hide or exaggerate its impact on performance. 

Part of our research work include the evaluation of 
interconnection networks (INs) and, to that purpose, 
we modeled a switch and a NIC and use these elements 
in a Simics-based environment. In order to make fair 
comparisons with other alternatives, and to minimize 
the number of pieces of software to program (thus, also 
reducing the opportunities of introducing bugs or, 
simply, bad programs) we reused as many modules as 
possible. To that extent, our NIC behaved as an 
Ethernet NIC. Any MPI implementation with support 
for IP (most, if not all, available ones include this 
support) could then use our network. As an example of 
the kind of evaluations that could be done in this 
environment, we chose to compare different 
congestion-control techniques. 

Many computing clusters use TCP/IP to run MPI 
applications, because they work “out of the box”, 
without acquiring a dedicated network or using new 
protocol stacks. This reinforced the idea of having a 
NIC which behaves as an Ethernet card. In the 
literature we can find many research works assessing 
the performance of applications running on top of MPI 
implementations based on TCP/IP. Conclusions of 
these works include: 

- The software overhead associated to TCP/IP is 
very high, and good performance can be achieved 
by using alternative, lightweight protocols  [2] 

- Performance measurements (available bandwidth, 
delay) on TCP-based networks are highly variable, 
so that average values may not be of much interest 
 [5]. 

- Good performance on a TCP/IP-based MPI 
implementation can only be obtained after fine-
tuning the Ethernet drivers and the TCP 
parameters  [18].  

What apparently was a good idea resulted in a 
nightmare, because unexpected interactions between 
the congestion control mechanisms implemented in the 
simulated IN (those we were evaluating) and those 
implemented by TCP or user-level protocols. In this 
paper we report this experience, and the conclusions 
learned from it. In particular, we use a Simics-based 
environment, combined with an in-house developed IN 
simulator to evaluate the impact on performance of 
some congestion-control strategies. A collection of 
parallel applications are run on Linux-based 
(simulated) machines that interface with the IN using 
an Ethernet-compatible interface. Different MPI 
implementations and protocol stacks are compared, in 
order to assess the impact of these set-ups in the 
performance of the applications. 

The rest of the paper is organized as follows. In 
section 2 we define some terms, required to fully 
understand this work. In Section 3 the experimental 
set-up is defined. In Section 4 we explain the results of 
our experiments, for each MPI implementation. 
Section 5 analyzes and summarizes these results. 
Finally in section 6 we enumerate the conclusions of 
this work, together with some follow-on research lines. 

 

2. Some definitions 
 

In this section we define two congestion control 
techniques that are used in our experiments and 
evaluations. The reader should note that the main focus 
of this paper is not on congestion control. Techniques 
such as IPR and LBR, defined in the next paragraphs, 
are only used to illustrate the difficulties of doing a 
full-system simulation while trying to evaluate the 
exact bearing on performance of a change in the IN 
behavior. 

Congestion appears in a network when compute 
nodes impose a load close to that the network is able to 
cope with. As new packets fill up the router buffers, 
the router will not only stop accepting additional 
traffic, but will also delay any in-transit traffic. 
Although congestion may emerge in localized areas, if 
injection pressure is not reduced it may quickly spread 
through the whole network. Some networks are able to 
operate at maximum capacity (in saturation) while 
exhibiting only minor levels of congestion. However, 
many others show signs of throughput degradation at 
loads beyond their saturation points  [7]. 

As congestion appears when the network is 
overloaded, congestion control techniques deal with it 



by limiting packet injection as soon as the network 
exhibits signs of being congested. There are different 
ways of diagnosing the apparition of congestion and 
dealing with it, see for example  [9]. In this work, we 
focus only on two simple methods, based on 
information locally available at the routing elements 
that showed good performance with minimal 
implementation costs: 

- In-transit Priority Restriction (IPR). For a given 
fraction P of cycles, priority is given to in-transit 
traffic, meaning that, in those cycles, injection of a 
new packet is only allowed if it does not compete 
with packets already in the network. P may vary 
from 0 (no restriction) to 1 (absolute priority to in-
transit traffic). This is the method applied in 
IBM’s BG/L torus network  [1]. 

- Local Buffer Restriction (LBR). Most routers split 
each physical link into several virtual channels 
(see next section) in such a way that the 
combination of an escape sub-network with one or 
more adaptive sub-networks provides deadlock-
free adaptive routing  [3]. The LBR mechanism has 
been designed specifically for adaptive routers that 
rely on Bubble Flow Control  [15] to avoid 
deadlock in the escape sub-network. A previous 
study showed the bubble restriction also provides 
congestion control for the escape sub-network  [7]. 
LBR extends this mechanism to all new packets 
that enter the network. That is, a packet can only 
be injected into an adaptive virtual channel if such 
action leaves room for at least B packets in the 
transit buffer associated to that virtual channel. 
The parameter B indicates the number of buffers 
reserved for in-transit traffic. In other words, 
congestion is estimated by the current buffer 
occupancy. 

The parameters (P for IPR and B for LBR) allow us 
to vary the degree of restriction. In this work, we have 
set these parameters to values that, in previous 
experiments, proved to perform well in most scenarios: 
P=1 (the maximum) and B=3 (inject in an adaptive 
channel only when its queue is empty or almost 
empty). Note that the adaptive bubble router in  [15] 
corresponds to the “Base” case of B=0 and P=0. 

 

3. The experimental set-up 
 

Experiments have been performed using the in-
house developed Interconnection Network Simulation 
and Evaluation Environment (INSEE for short) 
described in  [16]. It consists of two main modules: an 
interconnection network simulator (FSIN), and a 
traffic-generation module (TrGen), which either 
provides traffic (synthetically or from traces) or 

interfaces with a Simics-based full system simulation 
environment  [19]. In our set-up Simics performs the 
full system simulation of the nodes and, when a packet 
needs to be interchanged between two nodes, this 
interchange is actually simulated by FSIN. 

Resource availability restrictions limit our ability to 
make full-system simulations to multicomputers of up 
to 64 nodes. As our experiments deal with congestion 
control, we have chosen a 1D ring IN topology, more 
prone to congestion problems than others with higher 
degrees of connectivity (such as 2D torus, which would 
be more adequate for a real system). The router model 
for the network is depicted in Fig. 1. 

 
Fig. 1. Model of router simulated by FSIN for 1D 

networks, with a detailed view of the X+ input port 
showing the 3 virtual channels that share its link 

  
Each network channel in the router is split into three 

virtual channels (VCs): an Escape channel (governed 
by the bubble routing rules  [15]), and two adaptive 
channels. Note that a ring network has just one 
minimal path from source to destination, so packets 
cannot adapt. Thus, the only difference between the 
Escape VC and the other two is that accesses to the 
“adaptive” VCs are not restricted by the bubble rules. 
Each node is able to simultaneously consume several 
packets arriving to the reception port. There are two 
injection ports, and the interface should perform a pre-
routing decision: packets moving towards the X+ axis 
are stored in the I+ injection port, and those towards 
X– go to the I– injection port. Transit and injection 
queues are able to store 4 packets of 16 phits (unit of 
transit through the wires) each. Phit length is 4 bytes. 

Each instance of Simics can simulate a variety of 
real hosts, both hardware and software including the 
operating system. We simulate a cluster of 64 Intel 
Pentium-4 processors, running at 200 MHz (1 Simics 
cycle = 50 ns), with 64 MB of RAM. Every 8 nodes 
are simulated using a single instance of Simics. Nodes 
run a RedHat 7.3 operating system, and are configured 
to use some implementations of MPI: MPICH  [12], 
LA-MPI  [10] and LAM/MPI  [11]. 

The link bandwidth of FSIN routers is 32 bits by 
FSIN cycle. Interaction between Simics and FSIN has 



been adjusted to run 200 FSIN cycles per 10000 
Simics cycles. Thus, the bandwidth of links is 128 
Mb/s. 

We have selected these MPI implementations 
because of the different protocol stack and methods 
they use to perform the parallel communication, and 
because they are of widespread use. All of them 
support several protocol stacks depending on the 
underlying interconnection network, for example 
Ethernet, Infiniband or Myrinet. As we use an 
Ethernet-like simulated NIC, we use MPICH with the 
P4/TCP/IP/Ethernet protocol stack, which uses the 
TCP mechanisms to recover lost messages and for 
congestion control. LA-MPI supports two possible 
configurations on top of Ethernet, one using 
TCP/IP/Ethernet and another with UDP/IP/Ethernet. 
We have chosen the UDP one to evaluate a protocol 
stack without TCP. In LA-MPI over UDP, flow control 
and error recovery is done in user space, and not in 
kernel space (as is done TCP-based stacks). LAM also 
supports UDP and TCP communication. For the 
reasons we explain in the next paragraph, we have 
selected an UDP-based stack. In this case, LAM works 
by launching a communication daemon at each node, 
which is in charge of all the interchanges of messages; 
these daemons communicate using UDP. These 
protocol stacks are summarized in Fig. 2. 
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Fig. 2. Protocol stacks used in the MPI 

implementations used in the experiments 
 
Our IN simulator does not lose packets. However, 

when there is congestion in the network, latencies 
grow. Protocols such as TCP use timers to detect errors 
and congestion. When a timeout for a packet is 
triggered, the protocol assumes that the packet is lost, 
probably due to congestion. The packet is re-
transmitted and a flow-control mechanism that restricts 
the injection of new packets is activated, in order to 
alleviate the congestion. If the interconnection network 
itself implements its own congestion-control 
mechanism, interferences with TCP are unavoidable. 
For this reason we selected, when possible, protocol 
stacks without this protocol. 

Fig. 3 depicts all the elements that interact in our 
full-system simulation environment. We will now 
explain these interactions. 

The MPI application of choice (one of the NAS 
parallel benchmarks) is launched in the first Simics 
node, which then launches the application on the rest 
of nodes. Whenever a node wants to send a message to 
another, it passes through several software layers to 
build one or many adequately formatted packets for 
each message. First, the message is segmented and 
encapsulated in the kernel by a protocol stack, in 
example TCP/IP/Ethernet. Then the driver of the 
network interface card (NIC) injects the generated 
packets into the network interface card that, in turn, 
injects the packets into the network. In our simulated 
environment the NIC is a Simics software module that 
models a DEC21143 fast Ethernet. We have 
implemented a Traffic Manager module into Simics 
that intercepts the sending packets from the NIC and 
send them (using a real network) to our network 
simulator (INSEE). 

Packets are received by the TrGen module in 
INSEE that is in charge of providing an interface with 
the network simulator (FSIN). TrGen puts received 
packets into its injection queues at FSIN routers. Then, 
FSIN simulates the way packets travel through the 
network, and delivers them to its destination router. 
When this happens, the packet is sent back to TrGen, 
which sends the packet to its Simics destination node. 
The packet is received and queued at the Traffic 
Manager module, and will leave this module to be 
injected at the simulated DEC21143 card. 

 

  
Fig. 3. Elements of our full-system simulation 
environment that simulates an MPI application 

running on top of an INSEE (simulated) network 
 
Once the packet is injected at the simulated NIC, 

this arrival will cause an interruption that will be 
attended by the NIC driver, already in the kernel space 



of the host. The driver will process the packet and send 
it to the kernel protocol stack that will remove the 
several protocol envelopes that the packet has around 
the data which the parallel application awaits. 

The synchronization among all nodes and the IN is 
done at two levels. The first one is the synchronization 
within each Simics instance that runs 8 nodes. This 
synchronization is done using a round-robin 
mechanism: each node executes a determined number 
of cycles, then the next node and so on. This is 
provided by the own Simics itself, using a “timing” 
module. 

The second level of synchronization is among 
Simics instances and INSEE, in a lock-step fashion, 
using a client-server model. Each instance of Simics 
includes a synchronization client, and INSEE includes 
a synchronization server. The client allows Simics 
instances to run for a pre-defined number of cycles, 
and then sends a “timestamp” signal to the server. 
When the synchronization server has received the 
signals from all the clients, INSEE runs for a number 
of FSIN cycles, before sending, via multicast, a 
“continue” signal to all the clients – which allows the 
Simics instances to resume its execution. 

With this synchronization mechanism, all packets 
that enter from a node into the INSEE are stored in a 
queue, waiting until the next scheduled run of FSIN to 
be injected into it. However, packets that arrive to a 
node are injected at that precise moment into the NIC, 
but are not processed by Simics until its next scheduled 
run. 
 

4. Experiments 
 

We completed all the experiments using some of the 
NAS Parallel benchmarks  [13] as target applications. 
We have chosen three representative benchmarks: CG, 
BT, IS, with the standard size A. MG is not included in 
the study because it behaves like CG. The same occurs 
with LU and SP, that behave like BT. It is important to 
know that the IS benchmark makes intensive use of the 
collective operation MPI_Alltoall. 

In all figures, execution times are not represented as 
they are, but are normalized to the base case (without 
congestion control). This is because times of each 
benchmark are remarkably different. For each 
experiment, we plot the mean value together with the 
99% confidence level intervals.  

 

4.1. Traces 

 
Before performing full-system simulations, we have 

used other way of dealing with actual traffic from 
applications: trace-driven simulation. For this, traces of 

some NPB applications are obtained in a real system 
(no simulation is involved) using a modified version of 
MPICH that shows all point-to-point operations 
involved in the MPI collectives. With them, we feed 
our simulator taking into account only the causal 
relationship of the messages, so all CPU events are 
discarded. This traffic generation methodology 
emulates infinitely fast processors, so that the network 
is the bottleneck of the system. Thus, we can obtain an 
optimistic estimation of the advantages of congestion 
control techniques (or any other characteristic of the IN 
under evaluation). It is “optimistic” in the sense that, in 
an actual system, processes do not only communicate, 
but also compute, so that the actual utilization of the 
network is less intensive, and congestion is less prone 
to appear. 

We can see the results obtained for both congestion 
control mechanism in Fig. 4. Both congestion control 
mechanisms are beneficial for BT and IS, because their 
traffic patterns consist of large messages that, when 
decomposed into packets, are able to congest the IN. In 
contrast, CG is harmed by these mechanisms, due to its 
traffic pattern, which consists of sequences of small 
messages, arranged by dependency chains. Thus, 
congestion does not appear, and any mechanism that 
restricts packet injection is harmful, because it imposes 
unnecessary delays that accumulate and increase the 
overall execution time.  
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Fig. 4. Results from NPB traces using INSEE trace-
driven simulation. Relative times to complete a run 
of benchmarks BT, CG and IS, and 99% confidence 

intervals. Base time (1.0) corresponds to the run 
with congestion control deactivated 

 

4.2. MPICH 

 
Our first attempt to obtain results from a full-system 

simulation was using the MPICH implementation of 
MPI. This is one of the most widely used MPI 
implementations. The traces described above were 
obtained using this implementation, so we expected the 
results to be similar but attenuated compared to those 
described in the previous section, because actual 



applications include computation phases in which the 
network is not used, so that congestion is less prone to 
appear. However, this is not the case, as we can see in 
Fig. 5. What we see is that BT does not experiment any 
significant change in performance when using IPR or 
LBR, and that CG and IS benefit from congestion 
control at the network level. 

When we analyzed the reasons of this behavior, we 
discovered some unexpected interactions between TCP 
congestion control and those implemented in the 
network. When IPR or LBR is activated, the latency 
values provided by the network are in a smaller range 
than in the base case (in other words, there is less 
jitter). TCP can, for this reason, estimate values for its 
timeouts more accurately. In the base case, when the 
estimation of timeouts is not very precise, there are 
many packet retransmissions, TCP’s mechanism to 
deal with congestion (basically, slow start) are 
activated very often, and actual throughput is 
exceedingly poor. When we help TCP by reducing the 
jitter, these mechanisms are triggered much less often, 
and the applications observe a higher network 
throughput. This effect is clearly visible in CG and IS, 
because both applications make intensive use of the 
network (the computation phases are short). In 
contrast, as BT is more CPU-intensive, the interaction 
between congestion control mechanisms is hidden by 
its low network utilization. 
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Fig. 5. Results of the full-system simulation using 

MPICH 
 
This adverse effect could be reduced if we used an 

optimized version of TCP instead of the slow-start 
algorithm for flow and congestion control implemented 
in the “standard” TCP (often called “Reno TCP”  [8]). 
There are a variety of TCP versions that implement 
flow and congestion control algorithms with a more 
efficient management of the transmission window, 
designed for modern networks with faster speeds and 
more reliable links. Some examples are HighSpeed 
TCP  [4], Vegas TCP  [14], H-TCP  [17] and BIC TCP 

 [20]. The most recent Linux kernels include some of 
these variations of TCP; however, our experimental 
set-up was done with a Red Hat 7.3 distribution, whose 
kernel did not allow us to experiment with TCP. A 
kernel upgrade could have been done, but they would 
make simulations slower or even unstable. We opted 
for abandoning TCP-based implementations of MPI, 
which included MPICH. 

 

4.3. LA-MPI 

 
Once the decision of avoiding TCP was taken, we 

searched for another (free) MPI implementation 
providing support for MPI directly over Ethernet, but 
we did not find any. However, we found LA-MPI, 
which provides an implementation of MPI over UDP 
(over Ethernet). Since UDP does not implement error 
and congestion control, and its implementation over 
IP/Ethernet is very simple (it basically adds some 
headers to the Ethernet frames), we repeated our 
experiments running the same benchmarks. 

LA-MPI performs an application level error control 
to avoid packet losses. A packet may be dropped when 
intermediate buffers are full. We had to tune the 
“RETRANS_TIME” parameter in the source code of 
LA-MPI in order to modify the maximum time a 
message sender has to wait for the ACK before 
retransmitting it. The standard value for this parameter 
is 10 s.; we changed it to 1 s. in order to accelerate 
retransmissions. 

We can see the results in Fig. 6. They are similar to 
those from the traces, but slightly smoothed. This is 
true for all the benchmarks, although in some cases the 
confidence intervals overlap. Thus, LA-MPI looked 
like a good platform for experimentation. However, 
this project was abandoned some time ago and it is no 
longer supported, so we decide search for another MPI 
implementation over UDP/IP. 
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Fig. 6. Results of the full-system simulation using 

LA-MPI 



4.4. LAM/MPI 

 
LAM/MPI is also a very well-known and widely 

used MPI implementation. It can work in different 
modes: direct TCP communication among MPI 
processes, or indirect communication via LAM 
daemons (lamd). This module creates a daemon in 
every node which is in charge of all communications 
and uses UDP/IP. As related in the LAM User Guide:  

“Rather than send messages directly from one MPI 
process to another, all messages are routed through 
the local LAM daemon, the remote LAM daemon (if the 
target process is on a different node), and then finally 
to the target MPI process. This potentially adds two 
hops to each MPI message”. 

So latencies are larger and messages could be lost 
when the network is congested. This indirect version of 
LAM looked like a viable option to experiment without 
dealing with TCP interferences. But initial runs using 
LAM were very slow, because of the lamds. When 
their buffers are full, instead of using any kind of 
backpressure to tell the processor to stop injection, they 
drop the messages they can not store. The dropped 
messages are resent only when a timeout is triggered. 
We modified the LAM_TO_DLO_ACK parameter in 
LAM from 0.5 s to 0.5 ms. This parameter defines the 
maximum time to wait for an ACK from a node that 
should have received a message; if this time expires, 
the message will be retransmitted. We can see the 
results after this modification in Fig. 7.  

In summary, LAM implements, at the application 
level, an error recovery mechanism similar to TCP 
that, again, mixes-up congestion control and error 
control – and, again, interferes with congestion control 
applied at the network. 
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Fig. 7. Results from Simics using LAM/MPI 

 

5. Analysis of the results 
 

Our search for a full-system simulation environment 
to evaluate our proposals in the field of IN design has 

been far from successful. These environments are 
complex, because they include many elements: 
applications, operating systems, protocol stacks, 
drivers, and so on. Trying to keep things simple we 
decided to reuse as many elements as possible, and this 
proved to be a bad decision. Focusing on MPI 
implementations, we have seen that the most used 
ones, which work on top of TCP or UDP, are not 
adequate for measuring the performance of INs, 
because these protocols were developed for other kind 
of networks (the Internet), whose needs are different. 

TCP includes end to end flow and congestion 
controls that are very sensitive to jitter. Our hardware-
implemented congestion control mechanism provides a 
more stable value of packet latency. This maintains 
TCP transmission window more stable, providing a 
better transmission rate. When running applications on 
MPICH over TCP, the utilization of network-based 
congestion control resulted in execution times much 
shorter that those obtained without this control. 

If TCP is not used, we find that the MPI 
middleware implements its own versions of error 
control and congestion control, so we are not free from 
interactions with overlapping mechanisms 
implemented at the network. Experiments with LA-
MPI shows how a lightweight MPI implementation on 
top of UDP (that is, almost directly over the network 
interface) is able to expose the characteristics of the 
network. Unfortunately, LA-MPI can be considered 
obsolete. LAM/MPI also work on top of UDP, via a 
collection of communicating lamds, but this way of 
working is very inefficient and should not be used in 
actual, production work. Execution times reported by 
our simulator for each benchmark (Table 1) clearly 
show that LAM/MPI using lamds is the worst 
performer of the studied MPI implementations. 

 
Table 1. Average number of FSIN cycles needed to 

run an iteration of each benchmark 
 BT CG IS
MPICH 1806022 2355266 1684316 
LA-MPI 1805120 2238120 1639150 
LAM/MPI 2034136 4350458 4151681 
 

6. Conclusions and future work 
 

The utilization of full-system simulation 
environments may be far from adequate when testing 
non-existent networks. A complete evaluation would 
require the simulation of the hardware plus drivers, 
libraries, MPI implementations and even applications.  

The reutilization of common pieces of software 
allows, theoretically, for a fairer comparison but may 
be influenced by unexpected side-effects. The 
implementation of ad-hoc protocol stacks may be more 



adequate to test the potential of a given solution but, 
when comparing two alternatives, it would be difficult 
to find where the performance differences may lie: 
hardware or any piece of the software. 

In this paper we have evaluated the effects of 
network-level congestion control techniques on the 
performance of MPI applications, using a variety of 
MPI implementations. We have observed that this form 
of congestion control results in lower latencies and 
jitter – as expected. This behavior has a side-effect not 
foreseen: it makes TCP behave better, which results in 
great performance gains when using protocol stacks 
with this protocol. Ideally, TCP should be put out of 
the protocol stacks but, as we have shown, this is not 
an easy task: publicly available implementations of 
MPI make use of this protocol, or implement their own 
congestion or flow control mechanisms at the 
application level. 

For the future, we need to take a modular 
implementation of MPI, such as MPICH, and 
implement a module that provides MPI support 
directly on top of our simulated network. The result 
will be an evaluation environment with less 
interference. However, this module has to be done with 
enormous care because, otherwise, it could be the 
cause of unexpected performance results.   
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