
Evaluation of Interconnection Networks Using Full-System Simulators:

Lessons Learned

Javier Navaridas Fco. Javier Ridruejo Jose Miguel-Alonso

Dep. of Computer Architecture and Technology, The University of the Basque Country
P. Manuel de Lardizabal, 1 (20018) Donostia-San Sebastian, Spain

javier-navaridas@ehu.es franciscojavier.ridruejo@ehu.es j.miguel@ehu.es

Abstract

In this paper we show the difficulties encountered

when performing full system simulation of a distributed
memory parallel system. To illustrate the problem, we
have chosen a workbench that evaluates the impact on
application performance of some simple congestion-
control mechanism that can be implemented in the
interconnection network. Applications of choice are
some of those included in the NAS Parallel
Benchmarks. Running a full-system, execution-driven
simulation that combines Simics with an
interconnection network simulator, we observe some
unexpected, negative interactions of overlapping
congestion control techniques implemented at the
network level and at the host level.

Each MPI implementation uses a different protocol
stack, and some of them work without TCP. We
compare and contrast results obtained with MPICH,
LA-MPI and LAM..

1. Introduction

Full-system simulation has been embraced by

hardware and software producers as an invaluable help
in the development of new products. For example,
extensive tests of an operating system implementation
for a yet-to-be released machine, and the applications
running on top of it, can be done in a simulated system,
while obtaining accurate performance measurements.
Virtutech’s Simics [19] is one of the most prominent
examples of this kind of simulators; this product is able
to simulate PowerPC, MIPS, Alpha, ARM, IA-64,
SPARC V9, x86, and AMD64 architectures. IBM has a
full-system simulator for the Cell Broadband Engine™
(Cell BE) processor, codenamed Mambo [6]. And
many others are available for different architectures
and processors.

In the research area, these simulators have been
adopted with enthusiasm. In the scientific literature we

can find plenty of references to research done with
these tools – just see the list made available by
Virtutech1. In fact, it has become common by
conference reviewers, when examining a simulation-
based research work, to ask for a full-system
simulation of the systems under study, including large
parallel or distributed systems – in many cases, even
ignoring the high cost of this kind of simulations
(processors, memory, execution time, etc.)

In our experience, full-system simulation is not an
appropriate tool to evaluate the performance of a large
parallel system, because the resources required would
be even larger than the system under evaluation. Thus,
to study the complete system we need to simulate a
simplified model. The detailed view of the system,
essential to fine-tune pieces of hardware and software
can be done only for a limited number of nodes. In [1],
where the design of the torus interconnection network
of the BG/L is described, we can read:

“Given the complexity and scale of the BG/L
interconnection network, having an accurate
performance simulator was essential during the design
phase of the project (…) We also recognized the
difficulties in developing an execution-driven simulator
(…) for a system with up to 64K nodes. We therefore
decided upon a simulator that would be driven
primarily by application pseudocodes, in which
message-passing calls could be easily passed to the
simulator”.

Another important requirement of a full-system
simulation is, precisely, that it requires the simulation
of all the aspects of a system. When we are designing
an element that has to be implemented in hardware we
require modeling and programming many pieces of
software. Let us take a network interface card (NIC) as
an example. We need:

- A model of the NIC

1 http://www.virtutech.com/about/research/selected-pubs.html

- A driver for the operating system to interact with
the NIC

- If the new NIC does not behave as a standard
network interface (for example, an Ethernet
interface) and we want to bypass the operating
system and/or the TCP/IP protocol stack, we also
need a new protocol stack and API

- If we have an application (or middleware) for
which we want to take advantage of the new NIC,
we need to modify it to use the new API

Of course, all these pieces have to be carefully
crafted and debugged, including their interactions. At
the end, when we are doing an experiment on
performance evaluation, it is extremely difficult to
determine if an unexpected bad result is due to a bad
NIC design, a buggy driver, or some unanticipated
driver / operating system interactions.

An additional issue comes into the light when
comparing systems. In the previous example, if we
introduce a design variation into the NIC, and we keep
the rest of the software layers unmodified, this
variation may result in unexpected interactions that can
hide or exaggerate its impact on performance.

Part of our research work include the evaluation of
interconnection networks (INs) and, to that purpose,
we modeled a switch and a NIC and use these elements
in a Simics-based environment. In order to make fair
comparisons with other alternatives, and to minimize
the number of pieces of software to program (thus, also
reducing the opportunities of introducing bugs or,
simply, bad programs) we reused as many modules as
possible. To that extent, our NIC behaved as an
Ethernet NIC. Any MPI implementation with support
for IP (most, if not all, available ones include this
support) could then use our network. As an example of
the kind of evaluations that could be done in this
environment, we chose to compare different
congestion-control techniques.

Many computing clusters use TCP/IP to run MPI
applications, because they work “out of the box”,
without acquiring a dedicated network or using new
protocol stacks. This reinforced the idea of having a
NIC which behaves as an Ethernet card. In the
literature we can find many research works assessing
the performance of applications running on top of MPI
implementations based on TCP/IP. Conclusions of
these works include:

- The software overhead associated to TCP/IP is
very high, and good performance can be achieved
by using alternative, lightweight protocols [2]

- Performance measurements (available bandwidth,
delay) on TCP-based networks are highly variable,
so that average values may not be of much interest
 [5].

- Good performance on a TCP/IP-based MPI
implementation can only be obtained after fine-
tuning the Ethernet drivers and the TCP
parameters [18].

What apparently was a good idea resulted in a
nightmare, because unexpected interactions between
the congestion control mechanisms implemented in the
simulated IN (those we were evaluating) and those
implemented by TCP or user-level protocols. In this
paper we report this experience, and the conclusions
learned from it. In particular, we use a Simics-based
environment, combined with an in-house developed IN
simulator to evaluate the impact on performance of
some congestion-control strategies. A collection of
parallel applications are run on Linux-based
(simulated) machines that interface with the IN using
an Ethernet-compatible interface. Different MPI
implementations and protocol stacks are compared, in
order to assess the impact of these set-ups in the
performance of the applications.

The rest of the paper is organized as follows. In
section 2 we define some terms, required to fully
understand this work. In Section 3 the experimental
set-up is defined. In Section 4 we explain the results of
our experiments, for each MPI implementation.
Section 5 analyzes and summarizes these results.
Finally in section 6 we enumerate the conclusions of
this work, together with some follow-on research lines.

2. Some definitions

In this section we define two congestion control
techniques that are used in our experiments and
evaluations. The reader should note that the main focus
of this paper is not on congestion control. Techniques
such as IPR and LBR, defined in the next paragraphs,
are only used to illustrate the difficulties of doing a
full-system simulation while trying to evaluate the
exact bearing on performance of a change in the IN
behavior.

Congestion appears in a network when compute
nodes impose a load close to that the network is able to
cope with. As new packets fill up the router buffers,
the router will not only stop accepting additional
traffic, but will also delay any in-transit traffic.
Although congestion may emerge in localized areas, if
injection pressure is not reduced it may quickly spread
through the whole network. Some networks are able to
operate at maximum capacity (in saturation) while
exhibiting only minor levels of congestion. However,
many others show signs of throughput degradation at
loads beyond their saturation points [7].

As congestion appears when the network is
overloaded, congestion control techniques deal with it

by limiting packet injection as soon as the network
exhibits signs of being congested. There are different
ways of diagnosing the apparition of congestion and
dealing with it, see for example [9]. In this work, we
focus only on two simple methods, based on
information locally available at the routing elements
that showed good performance with minimal
implementation costs:

- In-transit Priority Restriction (IPR). For a given
fraction P of cycles, priority is given to in-transit
traffic, meaning that, in those cycles, injection of a
new packet is only allowed if it does not compete
with packets already in the network. P may vary
from 0 (no restriction) to 1 (absolute priority to in-
transit traffic). This is the method applied in
IBM’s BG/L torus network [1].

- Local Buffer Restriction (LBR). Most routers split
each physical link into several virtual channels
(see next section) in such a way that the
combination of an escape sub-network with one or
more adaptive sub-networks provides deadlock-
free adaptive routing [3]. The LBR mechanism has
been designed specifically for adaptive routers that
rely on Bubble Flow Control [15] to avoid
deadlock in the escape sub-network. A previous
study showed the bubble restriction also provides
congestion control for the escape sub-network [7].
LBR extends this mechanism to all new packets
that enter the network. That is, a packet can only
be injected into an adaptive virtual channel if such
action leaves room for at least B packets in the
transit buffer associated to that virtual channel.
The parameter B indicates the number of buffers
reserved for in-transit traffic. In other words,
congestion is estimated by the current buffer
occupancy.

The parameters (P for IPR and B for LBR) allow us
to vary the degree of restriction. In this work, we have
set these parameters to values that, in previous
experiments, proved to perform well in most scenarios:
P=1 (the maximum) and B=3 (inject in an adaptive
channel only when its queue is empty or almost
empty). Note that the adaptive bubble router in [15]
corresponds to the “Base” case of B=0 and P=0.

3. The experimental set-up

Experiments have been performed using the in-
house developed Interconnection Network Simulation
and Evaluation Environment (INSEE for short)
described in [16]. It consists of two main modules: an
interconnection network simulator (FSIN), and a
traffic-generation module (TrGen), which either
provides traffic (synthetically or from traces) or

interfaces with a Simics-based full system simulation
environment [19]. In our set-up Simics performs the
full system simulation of the nodes and, when a packet
needs to be interchanged between two nodes, this
interchange is actually simulated by FSIN.

Resource availability restrictions limit our ability to
make full-system simulations to multicomputers of up
to 64 nodes. As our experiments deal with congestion
control, we have chosen a 1D ring IN topology, more
prone to congestion problems than others with higher
degrees of connectivity (such as 2D torus, which would
be more adequate for a real system). The router model
for the network is depicted in Fig. 1.

Fig. 1. Model of router simulated by FSIN for 1D

networks, with a detailed view of the X+ input port
showing the 3 virtual channels that share its link

Each network channel in the router is split into three

virtual channels (VCs): an Escape channel (governed
by the bubble routing rules [15]), and two adaptive
channels. Note that a ring network has just one
minimal path from source to destination, so packets
cannot adapt. Thus, the only difference between the
Escape VC and the other two is that accesses to the
“adaptive” VCs are not restricted by the bubble rules.
Each node is able to simultaneously consume several
packets arriving to the reception port. There are two
injection ports, and the interface should perform a pre-
routing decision: packets moving towards the X+ axis
are stored in the I+ injection port, and those towards
X– go to the I– injection port. Transit and injection
queues are able to store 4 packets of 16 phits (unit of
transit through the wires) each. Phit length is 4 bytes.

Each instance of Simics can simulate a variety of
real hosts, both hardware and software including the
operating system. We simulate a cluster of 64 Intel
Pentium-4 processors, running at 200 MHz (1 Simics
cycle = 50 ns), with 64 MB of RAM. Every 8 nodes
are simulated using a single instance of Simics. Nodes
run a RedHat 7.3 operating system, and are configured
to use some implementations of MPI: MPICH [12],
LA-MPI [10] and LAM/MPI [11].

The link bandwidth of FSIN routers is 32 bits by
FSIN cycle. Interaction between Simics and FSIN has

been adjusted to run 200 FSIN cycles per 10000
Simics cycles. Thus, the bandwidth of links is 128
Mb/s.

We have selected these MPI implementations
because of the different protocol stack and methods
they use to perform the parallel communication, and
because they are of widespread use. All of them
support several protocol stacks depending on the
underlying interconnection network, for example
Ethernet, Infiniband or Myrinet. As we use an
Ethernet-like simulated NIC, we use MPICH with the
P4/TCP/IP/Ethernet protocol stack, which uses the
TCP mechanisms to recover lost messages and for
congestion control. LA-MPI supports two possible
configurations on top of Ethernet, one using
TCP/IP/Ethernet and another with UDP/IP/Ethernet.
We have chosen the UDP one to evaluate a protocol
stack without TCP. In LA-MPI over UDP, flow control
and error recovery is done in user space, and not in
kernel space (as is done TCP-based stacks). LAM also
supports UDP and TCP communication. For the
reasons we explain in the next paragraph, we have
selected an UDP-based stack. In this case, LAM works
by launching a communication daemon at each node,
which is in charge of all the interchanges of messages;
these daemons communicate using UDP. These
protocol stacks are summarized in Fig. 2.

Ethernet

IP

NPB

P4

Ethernet

IP

UDP

NPB

Error recovery

MPICH LA-MPI

Ethernet

IP

UDP

NPB

Daemon Flow
control & error recov.

LAM

TCP Flow control
& error recovery

Fig. 2. Protocol stacks used in the MPI

implementations used in the experiments

Our IN simulator does not lose packets. However,

when there is congestion in the network, latencies
grow. Protocols such as TCP use timers to detect errors
and congestion. When a timeout for a packet is
triggered, the protocol assumes that the packet is lost,
probably due to congestion. The packet is re-
transmitted and a flow-control mechanism that restricts
the injection of new packets is activated, in order to
alleviate the congestion. If the interconnection network
itself implements its own congestion-control
mechanism, interferences with TCP are unavoidable.
For this reason we selected, when possible, protocol
stacks without this protocol.

Fig. 3 depicts all the elements that interact in our
full-system simulation environment. We will now
explain these interactions.

The MPI application of choice (one of the NAS
parallel benchmarks) is launched in the first Simics
node, which then launches the application on the rest
of nodes. Whenever a node wants to send a message to
another, it passes through several software layers to
build one or many adequately formatted packets for
each message. First, the message is segmented and
encapsulated in the kernel by a protocol stack, in
example TCP/IP/Ethernet. Then the driver of the
network interface card (NIC) injects the generated
packets into the network interface card that, in turn,
injects the packets into the network. In our simulated
environment the NIC is a Simics software module that
models a DEC21143 fast Ethernet. We have
implemented a Traffic Manager module into Simics
that intercepts the sending packets from the NIC and
send them (using a real network) to our network
simulator (INSEE).

Packets are received by the TrGen module in
INSEE that is in charge of providing an interface with
the network simulator (FSIN). TrGen puts received
packets into its injection queues at FSIN routers. Then,
FSIN simulates the way packets travel through the
network, and delivers them to its destination router.
When this happens, the packet is sent back to TrGen,
which sends the packet to its Simics destination node.
The packet is received and queued at the Traffic
Manager module, and will leave this module to be
injected at the simulated DEC21143 card.

Fig. 3. Elements of our full-system simulation
environment that simulates an MPI application

running on top of an INSEE (simulated) network

Once the packet is injected at the simulated NIC,

this arrival will cause an interruption that will be
attended by the NIC driver, already in the kernel space

of the host. The driver will process the packet and send
it to the kernel protocol stack that will remove the
several protocol envelopes that the packet has around
the data which the parallel application awaits.

The synchronization among all nodes and the IN is
done at two levels. The first one is the synchronization
within each Simics instance that runs 8 nodes. This
synchronization is done using a round-robin
mechanism: each node executes a determined number
of cycles, then the next node and so on. This is
provided by the own Simics itself, using a “timing”
module.

The second level of synchronization is among
Simics instances and INSEE, in a lock-step fashion,
using a client-server model. Each instance of Simics
includes a synchronization client, and INSEE includes
a synchronization server. The client allows Simics
instances to run for a pre-defined number of cycles,
and then sends a “timestamp” signal to the server.
When the synchronization server has received the
signals from all the clients, INSEE runs for a number
of FSIN cycles, before sending, via multicast, a
“continue” signal to all the clients – which allows the
Simics instances to resume its execution.

With this synchronization mechanism, all packets
that enter from a node into the INSEE are stored in a
queue, waiting until the next scheduled run of FSIN to
be injected into it. However, packets that arrive to a
node are injected at that precise moment into the NIC,
but are not processed by Simics until its next scheduled
run.

4. Experiments

We completed all the experiments using some of the
NAS Parallel benchmarks [13] as target applications.
We have chosen three representative benchmarks: CG,
BT, IS, with the standard size A. MG is not included in
the study because it behaves like CG. The same occurs
with LU and SP, that behave like BT. It is important to
know that the IS benchmark makes intensive use of the
collective operation MPI_Alltoall.

In all figures, execution times are not represented as
they are, but are normalized to the base case (without
congestion control). This is because times of each
benchmark are remarkably different. For each
experiment, we plot the mean value together with the
99% confidence level intervals.

4.1. Traces

Before performing full-system simulations, we have

used other way of dealing with actual traffic from
applications: trace-driven simulation. For this, traces of

some NPB applications are obtained in a real system
(no simulation is involved) using a modified version of
MPICH that shows all point-to-point operations
involved in the MPI collectives. With them, we feed
our simulator taking into account only the causal
relationship of the messages, so all CPU events are
discarded. This traffic generation methodology
emulates infinitely fast processors, so that the network
is the bottleneck of the system. Thus, we can obtain an
optimistic estimation of the advantages of congestion
control techniques (or any other characteristic of the IN
under evaluation). It is “optimistic” in the sense that, in
an actual system, processes do not only communicate,
but also compute, so that the actual utilization of the
network is less intensive, and congestion is less prone
to appear.

We can see the results obtained for both congestion
control mechanism in Fig. 4. Both congestion control
mechanisms are beneficial for BT and IS, because their
traffic patterns consist of large messages that, when
decomposed into packets, are able to congest the IN. In
contrast, CG is harmed by these mechanisms, due to its
traffic pattern, which consists of sequences of small
messages, arranged by dependency chains. Thus,
congestion does not appear, and any mechanism that
restricts packet injection is harmful, because it imposes
unnecessary delays that accumulate and increase the
overall execution time.

Traces

0.7

0.8

0.9

1.0

1.1

BT CG IS

Base
IPR
LBR

Fig. 4. Results from NPB traces using INSEE trace-
driven simulation. Relative times to complete a run
of benchmarks BT, CG and IS, and 99% confidence

intervals. Base time (1.0) corresponds to the run
with congestion control deactivated

4.2. MPICH

Our first attempt to obtain results from a full-system

simulation was using the MPICH implementation of
MPI. This is one of the most widely used MPI
implementations. The traces described above were
obtained using this implementation, so we expected the
results to be similar but attenuated compared to those
described in the previous section, because actual

applications include computation phases in which the
network is not used, so that congestion is less prone to
appear. However, this is not the case, as we can see in
Fig. 5. What we see is that BT does not experiment any
significant change in performance when using IPR or
LBR, and that CG and IS benefit from congestion
control at the network level.

When we analyzed the reasons of this behavior, we
discovered some unexpected interactions between TCP
congestion control and those implemented in the
network. When IPR or LBR is activated, the latency
values provided by the network are in a smaller range
than in the base case (in other words, there is less
jitter). TCP can, for this reason, estimate values for its
timeouts more accurately. In the base case, when the
estimation of timeouts is not very precise, there are
many packet retransmissions, TCP’s mechanism to
deal with congestion (basically, slow start) are
activated very often, and actual throughput is
exceedingly poor. When we help TCP by reducing the
jitter, these mechanisms are triggered much less often,
and the applications observe a higher network
throughput. This effect is clearly visible in CG and IS,
because both applications make intensive use of the
network (the computation phases are short). In
contrast, as BT is more CPU-intensive, the interaction
between congestion control mechanisms is hidden by
its low network utilization.

MPICH

0.7

0.8

0.9

1.0

1.1

BT CG IS

BASE
IPR
LBR

Fig. 5. Results of the full-system simulation using

MPICH

This adverse effect could be reduced if we used an

optimized version of TCP instead of the slow-start
algorithm for flow and congestion control implemented
in the “standard” TCP (often called “Reno TCP” [8]).
There are a variety of TCP versions that implement
flow and congestion control algorithms with a more
efficient management of the transmission window,
designed for modern networks with faster speeds and
more reliable links. Some examples are HighSpeed
TCP [4], Vegas TCP [14], H-TCP [17] and BIC TCP

 [20]. The most recent Linux kernels include some of
these variations of TCP; however, our experimental
set-up was done with a Red Hat 7.3 distribution, whose
kernel did not allow us to experiment with TCP. A
kernel upgrade could have been done, but they would
make simulations slower or even unstable. We opted
for abandoning TCP-based implementations of MPI,
which included MPICH.

4.3. LA-MPI

Once the decision of avoiding TCP was taken, we

searched for another (free) MPI implementation
providing support for MPI directly over Ethernet, but
we did not find any. However, we found LA-MPI,
which provides an implementation of MPI over UDP
(over Ethernet). Since UDP does not implement error
and congestion control, and its implementation over
IP/Ethernet is very simple (it basically adds some
headers to the Ethernet frames), we repeated our
experiments running the same benchmarks.

LA-MPI performs an application level error control
to avoid packet losses. A packet may be dropped when
intermediate buffers are full. We had to tune the
“RETRANS_TIME” parameter in the source code of
LA-MPI in order to modify the maximum time a
message sender has to wait for the ACK before
retransmitting it. The standard value for this parameter
is 10 s.; we changed it to 1 s. in order to accelerate
retransmissions.

We can see the results in Fig. 6. They are similar to
those from the traces, but slightly smoothed. This is
true for all the benchmarks, although in some cases the
confidence intervals overlap. Thus, LA-MPI looked
like a good platform for experimentation. However,
this project was abandoned some time ago and it is no
longer supported, so we decide search for another MPI
implementation over UDP/IP.

LA-MPI

0.7

0.8

0.9

1.0

1.1

BT CG IS

BASE
IPR
LBR

Fig. 6. Results of the full-system simulation using

LA-MPI

4.4. LAM/MPI

LAM/MPI is also a very well-known and widely

used MPI implementation. It can work in different
modes: direct TCP communication among MPI
processes, or indirect communication via LAM
daemons (lamd). This module creates a daemon in
every node which is in charge of all communications
and uses UDP/IP. As related in the LAM User Guide:

“Rather than send messages directly from one MPI
process to another, all messages are routed through
the local LAM daemon, the remote LAM daemon (if the
target process is on a different node), and then finally
to the target MPI process. This potentially adds two
hops to each MPI message”.

So latencies are larger and messages could be lost
when the network is congested. This indirect version of
LAM looked like a viable option to experiment without
dealing with TCP interferences. But initial runs using
LAM were very slow, because of the lamds. When
their buffers are full, instead of using any kind of
backpressure to tell the processor to stop injection, they
drop the messages they can not store. The dropped
messages are resent only when a timeout is triggered.
We modified the LAM_TO_DLO_ACK parameter in
LAM from 0.5 s to 0.5 ms. This parameter defines the
maximum time to wait for an ACK from a node that
should have received a message; if this time expires,
the message will be retransmitted. We can see the
results after this modification in Fig. 7.

In summary, LAM implements, at the application
level, an error recovery mechanism similar to TCP
that, again, mixes-up congestion control and error
control – and, again, interferes with congestion control
applied at the network.

LAM

0.7

0.8

0.9

1.0

1.1

BT CG IS

BASE
IPR
LBR

Fig. 7. Results from Simics using LAM/MPI

5. Analysis of the results

Our search for a full-system simulation environment
to evaluate our proposals in the field of IN design has

been far from successful. These environments are
complex, because they include many elements:
applications, operating systems, protocol stacks,
drivers, and so on. Trying to keep things simple we
decided to reuse as many elements as possible, and this
proved to be a bad decision. Focusing on MPI
implementations, we have seen that the most used
ones, which work on top of TCP or UDP, are not
adequate for measuring the performance of INs,
because these protocols were developed for other kind
of networks (the Internet), whose needs are different.

TCP includes end to end flow and congestion
controls that are very sensitive to jitter. Our hardware-
implemented congestion control mechanism provides a
more stable value of packet latency. This maintains
TCP transmission window more stable, providing a
better transmission rate. When running applications on
MPICH over TCP, the utilization of network-based
congestion control resulted in execution times much
shorter that those obtained without this control.

If TCP is not used, we find that the MPI
middleware implements its own versions of error
control and congestion control, so we are not free from
interactions with overlapping mechanisms
implemented at the network. Experiments with LA-
MPI shows how a lightweight MPI implementation on
top of UDP (that is, almost directly over the network
interface) is able to expose the characteristics of the
network. Unfortunately, LA-MPI can be considered
obsolete. LAM/MPI also work on top of UDP, via a
collection of communicating lamds, but this way of
working is very inefficient and should not be used in
actual, production work. Execution times reported by
our simulator for each benchmark (Table 1) clearly
show that LAM/MPI using lamds is the worst
performer of the studied MPI implementations.

Table 1. Average number of FSIN cycles needed to

run an iteration of each benchmark
 BT CG IS
MPICH 1806022 2355266 1684316
LA-MPI 1805120 2238120 1639150
LAM/MPI 2034136 4350458 4151681

6. Conclusions and future work

The utilization of full-system simulation
environments may be far from adequate when testing
non-existent networks. A complete evaluation would
require the simulation of the hardware plus drivers,
libraries, MPI implementations and even applications.

The reutilization of common pieces of software
allows, theoretically, for a fairer comparison but may
be influenced by unexpected side-effects. The
implementation of ad-hoc protocol stacks may be more

adequate to test the potential of a given solution but,
when comparing two alternatives, it would be difficult
to find where the performance differences may lie:
hardware or any piece of the software.

In this paper we have evaluated the effects of
network-level congestion control techniques on the
performance of MPI applications, using a variety of
MPI implementations. We have observed that this form
of congestion control results in lower latencies and
jitter – as expected. This behavior has a side-effect not
foreseen: it makes TCP behave better, which results in
great performance gains when using protocol stacks
with this protocol. Ideally, TCP should be put out of
the protocol stacks but, as we have shown, this is not
an easy task: publicly available implementations of
MPI make use of this protocol, or implement their own
congestion or flow control mechanisms at the
application level.

For the future, we need to take a modular
implementation of MPI, such as MPICH, and
implement a module that provides MPI support
directly on top of our simulated network. The result
will be an evaluation environment with less
interference. However, this module has to be done with
enormous care because, otherwise, it could be the
cause of unexpected performance results.

Acknowledgements

This work has been done with the support of the
Spanish Ministerio de Educación y Ciencia, grant
TIN2004-07440-C02-01. Mr. J. Navaridas is supported
by a doctoral grant of the UPV/EHU.

References

[1] N.R. Adiga et al., “Blue Gene/L torus interconnection
network.” IBM Journal of Research and Development,
Volume 49, Number 2/3, 2005.
[2] A.F. Diaz, J. Ortega, A. Canas, F.J. Fernandez, A.

Prieto, "The Lightweight Protocol CLIC: Performance of an
MPI implementation on CLIC," cluster, p. 391, 3rd IEEE
International Conference on Cluster Computing
(CLUSTER'01), 2001.
[3] J. Duato. “A Necessary and Sufficient Condition for
Deadlock-Free Routing in Cut-Through and Store-and-
Forward Networks”. IEEE Trans. on Parallel and Distributed
Systems, vol. 7, no. 8, pp. 841-854, 1996.

[4] S. Floyd. “HighSpeed TCP for Large Congestion
Windows”, RFC3649, experimental, December 2003
[5] D.A. Grove and P.D. Coddington. “Communication
Benchmarking and Performance Modelling of MPI Programs
on Cluster Computers”. International Journal of

Supercomputing, vol. 34, 201-217 (2005).
[6] IBM. “IBM Full-System Simulator for the Cell
Broadband Engine Processor”. Available (nov. 2006) at
http://alphaworks.ibm.com/tech/cellsystemsim
[7] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Effects of
Injection Pressure on Network Throughput”, in Proc. PDP
2006 14th Euromicro Conference on Parallel, Distributed and
Network based Processing. Montbéliard-Sochaux - France-

February 15-17 2006.
[8] Jacobson, V., "Congestion Avoidance and Control",
Computer Communication Review, vol. 18, no. 4, pp. 314-
329, Aug. 1988.
[9] R. Jain. “Congestion control in computer networks:
issues and trends”. IEEE Network, vol.4 no.3, pp 24-30, May
1990.
[10] LA-MPI Home Page “The Los Alamos Message

Passing Interface” Available (Oct. 2006) at
http://public.lanl.gov/lampi/
[11] LAM/MPI Home Page “LAM/MPI Parallel
Computing.” Available (Oct. 2006) at http://www.lam-
mpi.org/
[12] MPI Forum. “MPICH Home Page”. Available (Oct.
2006) at http://www-unix.mcs.anl.gov/mpi/mpich/
[13] NASA Advanced Supercomputing (NAS) division.

“NAS Parallel Benchmarks” Available (Oct. 2006) at
http://www.nas.nasa.gov/Resources/Software/npb.html
[14] S. W. O’Malley, L. S. Brakmo, L. L. Peterson. “TCP
Vegas: New Techniques for Congestion Detection and
Avoidance”, SIGCOMM, 1994
[15] V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F.
Vallejo, “The Adaptive Bubble router”, Journal of Parallel
and Distributed Computing, vol 61, no. 9, pp.1180-1208
September 2001.

[16] F.J. Ridruejo, J. Miguel-Alonso. “INSEE: an
Interconnection Network Simulation and Evaluation
Environment”. Lecture Notes in Computer Science, Volume
3648 / 2005 (Proc. Euro-Par 2005), pp. 1014 - 1023.
[17] R. N. Shorten, D. J. Leith. “H-TCP: TCP for High
Speed and Long Distance Networks”, Proc. PFLDnet,
Argonne, 2004
[18] D. Turner and X. Chen. “Protocol-Dependent Message-

Passing Performance on Linux Clusters”. Proc of Cluster
2002, Chicago, September 25th, 2002.
[19] Virtutech Inc. “Simics page”. Available (Jan. 2006) at
http://www.virtutech.se/products/
[20] L. Xu, K. Harfoush, I.Rhee. “Binary Increase
Congestion Control for Fast, Long Distance Networks”.
IEEE INFOCOM, March 2004.

